亿电竞平台app【中国】有限公司

解决方案News
精辟透彻!三极管的原理、参数 、应用、检测...钜兴电子
2019.11.05

三极管

半导体三极管也称为晶体三极管,可以说它是电子电路中最重要的器件。三极管顾名思义具有三个电极。二极管是由一个PN结构成的,而三极管由两个PN结构成,共用的一个电极成为三极管的基极(用字母b表示)。其他的两个电极成为集电极(用字母c表示)和发射极(用字母e表示)。由于不同的组合方式,形成了一种是NPN型的三极管,另一种是PNP型的三极管。

晶体三极管的结构和类型

晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。它最主要的功能是电流放大和开关作用。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。三极管的结构示意图如图1所示,电路符号如图2所示。

从三个区引出相应的电极,分别为基极b发射极e和集电极c。发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;

NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。发射极箭头向外。发射极箭头指向也是PN结在正向电压下的导通方向。硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。

三极管的材料

三极管的材料有锗材料和硅材料。它们之间最大的差异就是起始电压不一样。锗管PN结的导通电压为0.2V左右,而硅管PN结的导通电压为0.6~0.7V。在放大电路中如果用同类型的锗管代换同类型的硅管,或用同类型的硅管代换同类型的锗管一般是可以的,但都要在基极偏置电压上进行必要的调整,因为它们的起始电压不一样。

但在脉冲电路和开关电路中不同材料的三极管是否能互换必须具体分析,不能盲目代换。

三极管的封装形式和管脚识别

常用三极管的封装形式有金属封装和塑料封装两大类,引脚的排列方式具有一定的规律。对于小功率金属封装三极管,底视图位置放置,使三个引脚构成等腰三角形的顶点上,从左向右依次为e b c;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为e b c。

目前,国内各种类型的晶体三极管有许多种,管脚的排列不尽相同,在使用中不确定管脚排列的三极管,必须进行测量确定各管脚正确的位置,或查找晶体管使用手册,明确三极管的特性及相应的技术参数和资料。

晶体三极管的电流放大作用

晶体三极管具有电流放大作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。这是三极管最基本的和最重要的特性。我们将ΔIc/ΔIb的比值称为晶体三极管的电流放大倍数,用符号“β”表示。电流放大倍数对于某一只三极管来说是一个定值,但随着三极管工作时基极电流的变化也会有一定的改变。

晶体三极管的三种工作状态

截止状态:当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。

放大状态:当加在三极管发射结的电压大于PN结的导通电压,并处于某一恰当的值时,三极管的发射结正向偏置,集电结反向偏置,这时基极电流对集电极电流起着控制作用,使三极管具有电流放大作用,其电流放大倍数β=ΔIc/ΔIb,这时三极管处放大状态。

饱和导通状态:当加在三极管发射结的电压大于PN结的导通电压,并当基极电流增大到一定程度时,集电极电流不再随着基极电流的增大而增大,而是处于某一定值附近不怎么变化,这时三极管失去电流放大作用,集电极与发射极之间的电压很小,集电极和发射极之间相当于开关的导通状态。三极管的这种状态我们称之为饱和导通状态。

根据三极管工作时各个电极的电位高低,就能判别三极管的工作状态,因此,电子维修人员在维修过程中,经常要拿多用电表测量三极管各脚的电压,从而判别三极管的工作情况和工作状态。

使用多用电表检测三极管

三极管基极的判别:根据三极管的结构示意图,我们知道三极管的基极是三极管中两个PN结的公共极,因此,在判别三极管的基极时,只要找出两个PN结的公共极,即为三极管的基极。

具体方法是将多用电表调至电阻挡的R×1k挡,先用红表笔放在三极管的一只脚上,用黑表笔去碰三极管的另两只脚,如果两次全通,则红表笔所放的脚就是三极管的基极。如果一次没找到,则红表笔换到三极管的另一个脚,再测两次;

如还没找到,则红表笔再换一下,再测两次。如果还没找到,则改用黑表笔放在三极管的一个脚上,用红表笔去测两次看是否全通,若一次没成功再换。这样最多没量12次,总可以找到基极。

三极管类型的判别:三极管只有两种类型,即PNP型和NPN型。判别时只要知道基极是P型材料还N型材料即可。当用多用电表R×1k挡时,黑表笔代表电源正极,如果黑表笔接基极时导通,则说明三极管的基极为P型材料,三极管即为NPN型。如果红表笔接基极导通,则说明三极管基极为N型材料,三极管即为PNP型。

半导体三极管的参数

半导体三极管的参数分为直流参数、交流参数和极限参数三大类。

(1) 直流参数

1)直流电流放大系数

在放大区基本不变。在共发射极输出特性曲线上,通过垂直于X轴的直线(vCE=const)来求取IC / IB ,如图3所示。在IC较小时和IC较大时,会有所减小,这一关系见图4。

2)极间反向电流

①集电极-基极间反向饱和电流ICBO

ICBO的下标CB代表集电极和基极,O是Open的字头,代表第三个电极E开路。它相当于集电结的反向饱和电流。

②集电极-发射极间的反向饱和电流ICEO

ICEO和ICBO有如下关系:

相当基极开路时,集电极和发射极间的反向饱和电流,即输出特性曲线IB=0那条曲线所对应的Y坐标的数值,如图5所示。

(2) 交流参数

1)交流电流放大系数

①共发射极交流电流放大系数β

在放大区,β值基本不变,可在共射接法输出特性曲线上,通过垂直于X轴的直线求取△IC/△IB。或在图02.08上通过求某一点的斜率得到β。具体方法如图6所示

2)特征频率fT

三极管的β值不仅与工作电流有关,而且与工作频率有关。由于结电容的影响,当信号频率增加时,三极管的β将会下降。当β下降到1时所对应的频率称为特征频率,用fT表示。

(3) 极限参数

1)集电极最大允许电流ICM

如图02.08所示,当集电极电流增加时,β 就要下降,当β值下降到线性放大区β值的70~30%时,所对应的集电极电流称为集电极最大允许电流ICM。至于β值下降多少,不同型号的三极管,不同的厂家的规定有所差别。可见,当IC>ICM时,并不表示三极管会损坏。

2)集电极最大允许功率损耗PCM

集电极电流通过集电结时所产生的功耗, PCM= ICVCB≈ICVCE,因发射结正偏,呈低阻,所以功耗主要集中在集电结上。在计算时往往用VCE取代VCB。

3)反向击穿电压

反向击穿电压表示三极管电极间承受反向电压的能力,其测试时的原理电路如图7所示。

①V(BR)CBO--发射极开路时的集电结击穿电压。下标BR代表击穿之意,是Breakdown的字头,C、B代表集电极和基极,O代表第三个电极E开路。

②V(BR)EBO--集电极开路时发射结的击穿电压。

③V(BR)CEO--基极开路时集电极和发射极间的击穿电压。

对于V(BR)CER表示BE间接有电阻,V(BR)CES表示BE间是短路的。几个击穿电压在大小上有如下关系:

V(BR)CBO≈V(BR)CES>V(BR)CER>V(BR)CEO>V(BR)EBO

由最大集电极功率损耗PCM、ICM和击穿电压V(BR)CEO,在输出特性曲线上还可以确定过损耗区、过电流区和击穿区,见图8。

半导体三极管的型号

国家标准对半导体三极管的命名如下

第二位:A表示锗PNP管、B表示锗NPN管、C表示硅PNP管、D表示硅NPN管第三位:X表示低频小功率管、D表示低频大功率管、G表示高频小功率管、A表示高频小功率管、K表示开关管。

表1 双极型三极管的参数

Baidu
sogou